European Resuscitation Council Guidelines for Resuscitation 2005
Section 6. Paediatric life support

Dominique Biarent, Robert Bingham, Sam Richmond, Ian Maconochie, Jonathan Wyllie, Sheila Simpson, Antonio Rodriguez Nunez, David Zideman

Introduction

The process

The European Resuscitation Council (ERC) issued guidelines for paediatric life support (PLS) in 1994, 1998 and 2000.1—4 The last edition was based on the International Consensus on Science published by the American Heart Association in collaboration with the International Liaison Committee on Resuscitation (ILCOR), undertaking a series of evidence-based evaluations of the science of resuscitation which culminated in the publication of the Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care in August 2000.5,6 This process was repeated in 2004/2005, and the resulting Consensus on Science and Treatment Recommendations were published simultaneously in Resuscitation, Circulation and Pediatrics in November 2005.7,8 The PLS Working Party of the ERC has considered this document and the supporting scientific literature, and has recommended changes to the ERC PLS Guidelines. These are presented in this paper.

Guidelines changes

The approach to changes has been to alter the guidelines in response to convincing new scientific evidence and, where possible, to simplify them in order to assist teaching and retention. As before, there remains a paucity of good-quality evidence on paediatric resuscitation specifically and some conclusions have had to be drawn from animal work and extrapolated adult data.

The current guidelines have a strong focus on simplification based on the knowledge that many children receive no resuscitation at all because rescuers fear doing harm. This fear is fuelled by the knowledge that resuscitation guidelines for children are different. Consequently, a major area of study was the feasibility of applying the same guidance for all adults and children. Bystander resuscitation improves outcome significantly,9,10 and there is good evidence from paediatric animal models that even doing chest compressions or expired air ventilation alone may be better than doing nothing at all.11 It follows that outcomes could be improved if bystanders, who would otherwise do nothing, were encouraged to begin resuscitation, even if they do not follow an algorithm targeted specifically at children. There are, however, dis-
tinct differences between the predominantly adult arrest of cardiac origin and asphyxial arrest, which is most common in children, so a separate paediatric algorithm is justified for those with a duty to respond to paediatric emergencies (usually healthcare professionals), who are also in a position to receive enhanced training.

Compression: ventilation ratios

The ILCOR treatment recommendation was that the compression:ventilation ratio should be based on whether one or more than one rescuers were present. ILCOR recommends that lay rescuers, who usually learn only single rescuer techniques, should be taught to use a ratio of 30 compressions to 2 ventilations, which is the same as the adult guidelines and enables anyone trained in BLS techniques to resuscitate children with minimal additional information. Two or more rescuers with a duty to respond should learn a different ratio (15:2), as this has been validated by animal and manikin studies. This latter group, who would normally be healthcare professionals, should receive enhanced training targeted specifically at the resuscitation of children. Although there are no data to support the superiority of any particular ratio in children, ratios of between 5:1 and 15:2 have been studied in manikins, and animal and mathematical models, and there is increasing evidence that the 5:1 ratio delivers an inadequate number of compressions. There is certainly no justification for having two separate ratios for children aged greater or less than 8 years, so a single ratio of 15:2 for multiple rescuers with a duty to respond is a logical simplification.

It would certainly negate any benefit of simplicity if lay rescuers were taught a different ratio for use if there were two of them, but those with a duty to respond can use the 30:2 ratio if they are alone, particularly if they are not achieving an adequate number of compressions because of difficulty in the transition between ventilation and compression.

Age definitions

The adoption of single compression:ventilation ratios for children of all ages, together with the change in advice on the lower age limit for the use of automated external defibrillators (AEDs), renders the previous guideline division between children above and below 8 years of age unnecessary. The differences between adult and paediatric resuscitation are based largely on differing aetiology, as primary cardiac arrest is more common in adults whereas children usually suffer from secondary cardiac arrest. The onset of puberty, which is the physiological end of childhood, is the most logical landmark for the upper age limit for use of paediatric guidance. This has the advantage of being simple to determine, in contrast to an age limit in years, as age may be unknown at the start of resuscitation. Clearly, it is inappropriate and unnecessary to establish the onset of puberty formally; if rescuers believe the victim to be a child they should use the paediatric guidelines. If a misjudgement is made and the victim turns out to be a young adult, little harm will accrue, as studies of aetiology have shown that the paediatric pattern of arrest continues into early adulthood. An infant is a child under 1 year of age; a child is between 1 year and puberty. It is necessary to differentiate between infants and older children, as there are some important differences between these two groups.

Chest compression technique

The modification to age definitions enables a simplification of the advice on chest compression. Advice for determining the landmarks for infant compression is now the same as for older children, as there is evidence that the previous recommendation could result in compression over the upper abdomen. Infant compression technique remains the same: two-finger compression for single rescuers and two-thumb, encircling technique for two or more rescuers, but for older children there is no division between the one- or two-hand technique. The emphasis is on achieving an adequate depth of compression with minimal interruptions, using one or two hands according to rescuer preference.

Automated external defibrillators

Case reports published since International Guidelines 2000 have reported safe and successful use of AEDs in children less than 8 years of age. Furthermore, recent studies have shown that AEDs are capable of identifying arrhythmias in children accurately and that, in particular, they are extremely unlikely to advise a shock inappropriately. Consequentially, advice on the use of AEDs has been revised to include all children aged greater than 1 year. Nevertheless, if there is any possibility that an AED may need to be used in children, the purchaser should check that the performance of the particular model has been tested against paediatric arrhythmias.

Many manufacturers now supply purpose-made paediatric pads or programmes, which typically attenuate the output of the machine to 50–75 J.
These devices are recommended for children aged 1–8 years. If no such system or manually adjustable machine is available, an unmodified adult AED may be used in children older than 1 year. There is currently insufficient evidence to support a recommendation for or against the use of AEDs in children aged less than 1 year.

Manual defibrillators
The 2005 Consensus Conference treatment recommendation for paediatric ventricular fibrillation (VF) or paediatric pulseless ventricular tachycardia (VT) is to defibrillate promptly. In adult ALS, the recommendation is to give a single shock and then resume CPR immediately without checking for a pulse or reassessing the rhythm (see Section 3). As a consequence of this single-shock strategy, when using a monophasic defibrillator in adults a higher initial energy dose than used previously is recommended (360 J versus 200 J) (see Section 3). The ideal energy dose for safe and effective defibrillation in children is unknown, but animal models and small paediatric series show that doses larger than 4 J kg\(^{-1}\) defibrillate effectively with negligible side effects. Biphasic shocks are at least as effective and produce less post-shock myocardial dysfunction than monophasic shocks. For simplicity of sequence and consistency with adult BLS and ALS, we recommend a single-shock strategy using a non-escalating dose of 4 J kg\(^{-1}\) (monophasic or biphasic) for defibrillation in children.

Foreign-body airway obstruction sequence
The guidance for managing foreign-body airway obstruction (FBAO) in children has been simplified and brought into closer alignment to the adult sequence. These changes are discussed in detail at the end of this section.

In the following text the masculine includes the feminine and ‘child’ refers to both infants and children unless noted otherwise.

6a Paediatric basic life support
Sequence of action
Rescuers who have been taught adult BLS and have no specific knowledge of paediatric resuscitation may use the adult sequence, with the exception that they should perform 5 initial breaths followed by approximately 1 min of CPR before they go for help (Figure 6.1; also see adult BLS guideline).
If you suspect that there may have been an injury to the neck, try to open the airway using chin lift or jaw thrust alone. If this is unsuccessful, add head tilt a small amount at a time until the airway is open.

4. Keeping the airway open, look, listen and feel for normal breathing by putting your face close to the child’s face and looking along the chest.
 - Look for chest movements.
 - Listen at the child’s nose and mouth for breath sounds.
 - Feel for air movement on your cheek.

Look, listen and feel for no more than 10 s before deciding.

5a If the child is breathing normally
 - Turn the child on his side into the recovery position (see below)
 - Check for continued breathing

5b If the child is not breathing or is making agonal gasps (infrequent, irregular breaths)
 - Carefully remove any obvious airway obstruction;
 - Give five initial rescue breaths;
 - While performing the rescue breaths, note any gag or cough response to your action. These responses or their absence will form part of your assessment of signs of a circulation, which will be described later.

Rescue breaths for a child over 1 year are performed as follows (Figure 6.2).
 - Ensure head tilt and chin lift.
 - Pinch the soft part of the nose closed with the index finger and thumb of your hand on his forehead.
 - Open his mouth a little, but maintain the chin upwards.
 - Take a breath and place your lips around the mouth, making sure that you have a good seal.
 - Blow steadily into the mouth over about 1–1.5 s, watching for chest rise.
 - Maintain head tilt and chin lift, take your mouth away from the victim and watch for his chest to fall as air is expelled.
 - Take another breath and repeat this sequence five times. Identify effectiveness by seeing that the child’s chest has risen and fallen in a similar fashion to the movement produced by a normal breath.

Rescue breaths for an infant are performed as follows (Figure 6.3).
 - Ensure a neutral position of the head and a chin lift.
 - Take a breath and cover the mouth and nasal apertures of the infant with your mouth, making sure you have a good seal. If the nose and mouth cannot be covered in the older infant, the rescuer may attempt to seal only the infant’s nose or mouth with his mouth (if the nose is used, close the lips to prevent air escape).
 - Blow steadily into the infant’s mouth and nose over 1–1.5 s, sufficient to make the chest visibly rise.
 - Maintain head tilt and chin lift, take your mouth away from the victim and watch for his chest to fall as air is expelled.
 - Take another breath and repeat this sequence five times.

Figure 6.2 Mouth-to-mouth ventilation—child. © 2005 ERC.

Figure 6.3 Mouth-to-mouth and nose ventilation—infant. © 2005 ERC.
If you have difficulty achieving an effective breath, the airway may be obstructed.

- Open the child’s mouth and remove any visible obstruction. Do not perform a blind finger sweep.
- Ensure that there is adequate head tilt and chin lift but also that the neck is not over-extended.
- If head tilt and chin lift have not opened the airway, try the jaw thrust method.
- Make up to five attempts to achieve effective breaths; if still unsuccessful, move on to chest compressions.

6. Assess the child’s circulation. Take no more than 10 s to
- look for signs of a circulation. This includes any movement, coughing or normal breathing (not agonal gasps, which are infrequent, irregular breaths);
- check the pulse (if you are a health care provider) but ensure you take no more than 10 s.

If the child is aged over 1 year, feel for the carotid pulse in the neck.

In an infant, feel for the brachial pulse on the inner aspect of the upper arm.

7a If you are confident that you can detect signs of a circulation within 10 s
- continue rescue breathing, if necessary, until the child starts breathing effectively on his own;
- turn the child onto his side (into the recovery position) if he remains unconscious;
- re-assess the child frequently.

7b If there are no signs of a circulation, or no pulse or a slow pulse (less than 60 min⁻¹ with poor perfusion), or you are not sure
- start chest compressions;
- combine rescue breathing and chest compressions.

Chest compressions are performed as follows. For all children, compress the lower third of the sternum. To avoid compressing the upper abdomen, locate the xiphisternum by finding the angle where the lowest ribs join in the middle. Compress the sternum one finger’s breadth above this; the compression should be sufficient to depress the sternum by approximately one third of the depth of the chest. Release the pressure and repeat at a rate of about 100 min⁻¹. After 15 compressions, tilt the head, lift the chin, and give two effective breaths. Continue compressions and breaths in a ratio of 15:2. Lone rescuers may use a ratio of 30:2, particularly if having difficulty with the transition between compression and ventilation. Although the rate of compressions will be 100 min⁻¹, the actual number delivered per minute will be less than 100 because of pauses to give breaths. The best method for compression varies slightly between infants and children.

To perform chest compression in infants, the lone rescuer compresses the sternum with the tips of two fingers (Figure 6.4). If there are two or more rescuers, use the encircling technique. Place both thumbs flat side by side on the lower third of the sternum (as above) with the tips pointing towards the infant’s head. Spread the rest of both hands with the fingers together to encircle the lower part of the infant’s rib cage with the tips of the fingers supporting the infant’s back. Press down on the lower sternum with the two thumbs to depress it approximately one third of the depth of the infant’s chest.

To perform chest compression in children over 1 year of age, place the heel of one hand over the lower third of the sternum (as above) (Figures 6.5 and 6.6). Lift the fingers to ensure that pressure is not applied over the child’s ribs. Position yourself vertically above the victim’s chest and, with your arm straight, compress the sternum to depress it by approximately one third of the depth of the chest. In larger children or for small rescuers, this is achieved most easily by using both hands with the fingers interlocked.

8. Continue resuscitation until
- the child shows signs of life (spontaneous respiration, pulse, movement);
- qualified help arrives;
- you become exhausted.

When to call for assistance

It is vital for rescuers to get help as quickly as possible when a child collapses.
When more than one rescuer is available, one starts resuscitation while another rescuer goes for assistance.

If only one rescuer is present, undertake resuscitation for about 1 min before going for assistance. To minimise interruption in CPR, it may be possible to carry an infant or small child while summoning help.

The only exception to performing 1 min of CPR before going for help is in the case of a child with a witnessed, sudden collapse when the rescuer is alone. In this case cardiac arrest is likely to be arrhythmogenic in origin and the child will need defibrillation. Seek help immediately if there is no one to go for you.

Recovery position

An unconscious child whose airway is clear, and who is breathing spontaneously, should be turned on his side into the recovery position. There are several recovery positions; each has its advocates. There are important principles to be followed.

- Place the child in as near true lateral position as possible, with his mouth dependent to enable free drainage of fluid.
- The position should be stable. In an infant this may require the support of a small pillow or a rolled-up blanket placed behind the back to maintain the position.
- Avoid any pressure on the chest that impairs breathing.
- It should be possible to turn the child onto his side and to return him back easily and safely, taking into consideration the possibility of cervical spine injury.
- Ensure the airway can be observed and accessed easily.
- The adult recovery position is suitable for use in children.

Foreign-body airway obstruction (FBAO)

No new evidence on this subject was presented during the 2005 Consensus Conference. Back blows, chest thrusts and abdominal thrusts all increase intrathoracic pressure and can expel foreign bodies from the airway. In half of the episodes, more than one technique is needed to relieve the obstruction.41 There are no data to indicate which measure should be used first or in which order they should be applied. If one is unsuccessful, try the others in rotation until the object is cleared.

The International Guidelines 2000 algorithm is difficult to teach and knowledge retention poor. The FBAO algorithm for children has been simplified and aligned with the adult version (Figure 6.7). This should improve skill retention and encourage people, who might otherwise have been reluctant, to perform FBAO manoeuvres on children.
The most significant difference from the adult algorithm is that abdominal thrusts should not be used to treat choking infants. Although abdominal thrusts have caused injuries in all age groups, the risk is particularly high in infants and very young children. This is because of the horizontal position of the ribs, which leaves the upper abdominal viscera much more exposed to trauma. For this reason, the guidelines for the treatment of FBAO are different between infants and children.

Recognition of FBAO

When a foreign body enters the airway, the child reacts immediately by coughing in an attempt to expel it. A spontaneous cough is likely to be more effective and safer than any manoeuvre a rescuer might perform. However, if coughing is absent or ineffective and the object completely obstructs the airway, the child will rapidly become asphyxiated. Active interventions to relieve FBAO are therefore required only when coughing becomes ineffective, but they then need to be commenced rapidly and confidently.

The majority of choking events in infants and children occur during play or eating episodes when a carer is usually present; thus, the events are frequently witnessed and interventions are usually initiated when the child is conscious.

Foreign-body airway obstruction is characterized by the sudden onset of respiratory distress associated with coughing, gagging or stridor. Similar signs and symptoms may be associated with other causes of airway obstruction, such as laryngitis or epiglottitis, which require different management. Suspect FBAO if the onset was very sudden and there are no other signs of illness and if there are clues to alert the rescuer, e.g. a history of eating or playing with small items immediately before the onset of symptoms.

Relief of FBAO

1. Safety and summoning assistance

Safety is paramount: rescuers must not place themselves in danger and should consider the safest treatment of the choking child.

- If the child is coughing effectively, no external manoeuvre is necessary. Encourage the child to cough, and monitor continually.
- If the child’s coughing is (or is becoming) ineffective, shout for help immediately and determine the child’s conscious level.

2. Conscious child with FBAO

- If the child is still conscious but has absent or ineffective coughing, give back blows.
- If back blows do not relieve the FBAO, give chest thrusts to infants or abdominal thrusts to children. These manoeuvres create an 'artificial cough' to increase intrathoracic pressure and dislodge the foreign body.

Back blows. Back blows in the infant are performed as follows.

- Support the infant in a head downwards, prone position, to enable gravity to assist removal of the foreign body.
- If back blows are ineffective, give chest thrusts to infants or abdominal thrusts to children. These manoeuvres create an ‘artificial cough’ to increase intrathoracic pressure.

Back blows in the child over 1 year of age are performed as follows.

- Support the child in a head downwards, prone position, to enable gravity to assist removal of the foreign body.
- A seated or kneeling rescuer should be able to support the child safely across their lap.
- Support the child’s head by placing the thumb of one hand at the angle of the lower jaw, and one or two fingers from the same hand at the same point on the other side of the jaw.
- Do not compress the soft tissues under the child’s jaw, as this will exacerbate the airway obstruction.

- Deliver up to five sharp back blows with the heel of one hand in the middle of the back between the shoulder blades.
- The aim is to relieve the obstruction with each blow rather than to give all five blows.

Back blows in the child over 1 year of age are performed as follows.

- Back blows are more effective if the child is positioned head down.
- A small child may be placed across the rescuer’s lap, as with the infant.
- If this is not possible, support the child in a forward-leaning position and deliver the back blows from behind.

If back blows fail to dislodge the object, and the child is still conscious, use chest thrusts for infants or abdominal thrusts for children. Do not use abdominal thrusts (Heimlich manoeuvre) in infants.
Chest thrusts for infants.

- Turn the infant into a head-downwards supine position. This is achieved safely by placing the free arm along the infant’s back and encircling the occiput with the hand.
- Support the infant down your arm, which is placed down (or across) your thigh.
- Identify the landmark for chest compressions (lower sternum approximately a finger’s breadth above the xiphisternum).
- Give five chest thrusts; these are similar to chest compressions but sharper and delivered at a slower rate.

Abdominal thrusts for children over 1 year.

- Stand or kneel behind the child; place your arms under the child’s arms and encircle his torso.
- Clench your fist and place it between the umbilicus and xiphisternum.
- Grasp this hand with the other hand and pull sharply inwards and upwards.
- Repeat up to five times.
- Ensure that pressure is not applied to the xiphoid process or the lower rib cage; this might cause abdominal trauma.

Following the chest or abdominal thrusts, reassess the child. If the object has not been expelled and the victim is still conscious, continue the sequence of back blows and chest (for infant) or abdominal (for children) thrusts. Call out, or send, for help if it is still not available. Do not leave the child at this stage.

6b Paediatric advanced life support

Prevention of cardiopulmonary arrest

In children, secondary cardiopulmonary arrests, caused by either circulatory or respiratory failure, are more frequent than primary arrests caused by arrhythmias.9,12,43–46 So-called ‘asphyxial arrests’ or respiratory arrests are also more common in young adulthood (e.g., trauma, drowning, poisoning).47,48 The outcome from cardiopulmonary arrests in children is poor; identification of the antecedent stages of cardiac or respiratory failure is a priority, as effective early intervention may be life saving.

The order of assessment and intervention for any seriously ill or injured child follows the ABC principles.

- A indicates airway (Ac for airway and cervical spine stabilisation for the injured child).
- B indicates breathing.
- C indicates circulation.

Interventions are made at each step of the assessment as abnormalities are identified; the next
step of the assessment is not started until the preceding abnormality has been managed and corrected if possible.

Diagnosing respiratory failure: assessment of A and B

The first steps in the assessment of the seriously ill or injured child are the management of the airway and breathing. Abnormalities in airway patency and breathing lead to respiratory failure. Signs of respiratory failure are

- respiratory rate outside the normal range for the child's age—either too fast or too slow
- initially increasing work of breathing which may progress to inadequate/decreased work of breathing, additional noises such as stridor, wheeze or grunting, or the loss of breath sounds
- cyanosis (without/with supplemental oxygen)

There may be associated signs in other organ systems affected by inadequate ventilation and oxygenation; these are detectable in the C steps of assessment, such as

- increasing tachycardia progressing to bradycardia (this latter sign being an ominous indicator of the loss of compensatory mechanisms)
- alteration in the level of consciousness

Diagnosing circulatory failure: assessment of C

Shock is characterised by a mismatch between metabolic tissue demand and delivery of oxygen and nutrients by the circulation. Physiological compensatory mechanisms lead to changes in the heart rate, in the systemic vascular resistance (which commonly increases as an adaptive response) and in tissue and organ perfusion. Signs of circulatory failure are

- increased heart rate (bradycardia is an ominous sign, heralding physiological decompensation)
- decreased systemic blood pressure
- decreased peripheral perfusion (prolonged capillary refill time, decreased skin temperature, pale or mottled skin)
- weak or absent peripheral pulses
- decreased or increased preload
- decreased urine output and metabolic acidosis

Other systems may be affected, for example

- respiratory rate may be increased initially, becoming bradypnoeic with decompensated shock
- level of consciousness may decrease because of poor cerebral perfusion

Diagnosing cardiopulmonary arrest

Signs of cardiopulmonary arrest include

- unresponsiveness
- apnoea or gasping respiratory pattern
- absent circulation
- pallor or deep cyanosis

In the absence of 'signs of life', search for a central pulse or cardiac sounds (by direct chest auscultation) for a maximum of 10 s, before starting CPR. If there is any doubt, start CPR.

Management of respiratory and circulatory failure

A and B

Open the airway and ensure adequate ventilation and oxygenation.

- Deliver high-flow oxygen.
- Achieving adequate ventilation and oxygenation may include the use of airway adjuncts, bag-mask ventilation (BMV), use of a laryngeal mask airway (LMA), securing a definitive airway by tracheal intubation and positive pressure ventilation.
- In rare, extreme circumstances, a surgical airway may be required.

C

Establish cardiac monitoring.

- Secure vascular access to the circulation. This may be via peripheral or central intravenous (IV) or by intraosseous (IO) cannulation.
- Give a fluid bolus and/or inotropes as required.

Assess and re-assess the child continuously, each time commencing at Airway before Breathing, thereafter moving onto the Circulation

Airway

Open the airway using basic life support techniques. Oropharyngeal and nasopharyngeal airways adjuncts can help maintain the airway. Use the oropharyngeal airway only in the unconscious child, in whom there is no gag reflex. Use the appropriate size, to avoid pushing the tongue backward and obstructing the epiglottis, or directly compressing the glottic area. The soft palate in
the child can be damaged by insertion of the oropharyngeal airway; avoid this by inserting the oropharyngeal airway under direct vision and passing it over a tongue depressor or laryngoscope. The nasopharyngeal airway is tolerated better in the conscious child (who has an effective gag reflex), but should not be used if there is a basal skull fracture or a coagulopathy. These simple airway adjuncts do not protect the airway from aspiration of secretions, blood or stomach contents.

Laryngeal mask airway

The LMA is an acceptable initial airway device for providers experienced in its use. It may be particularly helpful in airway obstruction caused by upper airway abnormalities. The LMA does not, however, protect the airway from aspiration of secretions, blood or stomach contents, and therefore close observation is required. LMA use is associated with a higher incidence of complications in small children compared with adults.54

Tracheal intubation

Tracheal intubation is the most secure and effective way to establish and maintain the airway, prevent gastric distension, protect the lungs against pulmonary aspiration, enable optimal control of the airway pressure and provide positive end expiratory pressure (PEEP). The oral route is preferable during resuscitation. Oral intubation is usually quicker and is associated with fewer complications than nasal placement. The judicious use of anaesthetics, sedatives and neuromuscular blocking drugs is indicated in the conscious child to avoid multiple intubation attempts or intubation failure.55-65 The anatomy of a child’s airway differs significantly from that of an adult; hence, intubation of a child requires special training and experience. Check that tracheal tube placement is correct by clinical examination and end-tidal capnography. The tracheal tube must be secured, and monitoring of the vital signs is essential.66

Rapid sequence induction and intubation. The child who is in cardiopulmonary arrest and deep coma does not require sedation or analgesia to be intubated; otherwise, intubation must be preceded by oxygenation, rapid sedation, analgesia and the use of neuromuscular blocking drugs to minimise intubation complications and failure.53 The intubator must be experienced and familiar with rapid-sequence induction drugs.

Tracheal tube sizes. The tracheal tube internal diameters (ID) for different ages are

- for neonates, 2.5–3.5 mm according to the formula (gestational age in weeks /10)
- for infants, 4 or 4.5 mm
- for children older than 1 year, according to the formula [(age in years /4) + 4]

Cuffed versus uncuffed tracheal tubes. In the pre-hospital setting, an uncuffed tracheal tube may be preferable when using sizes of up to 5.5 mm ID (i.e., for children up to 8 years). In hospital, a cuffed tracheal tube may be useful in certain circumstances, e.g. in cases of poor lung compliance, high airway resistance or large glottic air leak.68-70 The correctly sized cuffed tracheal tube is as safe as an uncuffed tube for infants and children (not for neonates), provided attention is paid to its placement, size and cuff inflation pressure; excessive cuff pressure can lead to ischaemic necrosis of the surrounding laryngeal tissue and stenosis. Maintain the cuff inflation pressure below 20 cmH2O and check it regularly.71

Confirmation of correct tracheal tube placement. Displaced, misplaced or obstructed tubes occur frequently in the intubated child and are associated with increased risk of death.72,73 No single technique is 100% reliable for distinguishing oesophageal from tracheal intubation.74-76 Assessment of the correct tracheal tube position is made by

- observation of the tube passing beyond the vocal cords
- observation of symmetrical chest wall movement during positive pressure ventilation
- observation of mist in the tube during the expiratory phase of ventilation
- absence of gastric distension
- equal air entry heard on bilateral auscultation of both axillae and apices of the chest
- absence of air entry into the stomach on auscultation
- detection of end-tidal CO2 if the child has a perfusing rhythm (this may be seen with effective CPR)
- improvement or stabilisation of SpO2 to the expected range
• improvement of heart rate towards the age-expected value (or remaining within the normal range)

If the child is in cardiopulmonary arrest and exhaled CO₂ is not detected, or if there is any doubt, confirm tracheal tube position by direct laryngoscopy. After correct placement and confirmation, secure the tracheal tube and reassess its position. Maintain the child’s head in neutral position; flexion of the head drives the tube further into the trachea whereas extension may pull it out of the airway. Confirm the position of the tracheal tube at mid trachea by plain chest radiograph; the tracheal tube tip should be at the level of the 2nd or 3rd thoracic vertebra.

DOPES is a useful acronym for the causes of sudden deterioration in an intubated child

• D: displacement of the tracheal tube
• O: obstruction of the tracheal tube
• P: pneumothorax
• E: equipment failure (source of gas, BMV, ventilator, etc.)
• S: stomach (gastric distension may alter diaphragm mechanics)

Breathing

Oxygenation

Use oxygen at the highest concentration (i.e., 100%) during resuscitation. Once circulation is restored, give sufficient oxygen to maintain peripheral oxygen saturation at or above 95%.78,79 Studies in neonates suggest some advantages to using room air during resuscitation, but the evidence as yet is inconclusive (see Section 6c).80—83 In the older child, there is no evidence for any such advantages, so use 100% oxygen for resuscitation.

Ventilation

Healthcare providers commonly provide excessive ventilation to victims of cardiopulmonary or respiratory arrest, and this may be detrimental. Hyperventilation causes increased thoracic pressure, decreased cerebral and coronary perfusion, and poorer survival rates in animals and adults.84—89 The ideal tidal volume should achieve modest chest wall rise. Use a ratio of 15 chest compressions to 2 ventilations (a lone rescuer may use 30:2); the correct compression rate is 100 min⁻¹.

Once the airway is protected by tracheal intubation, continue positive pressure ventilation at 12–20 breaths min⁻¹ without interrupting chest compressions. Take care to ensure that lung inflation is adequate during chest compressions. When circulation is restored, or if the child still has a perfusing rhythm, ventilate at 12–20 breaths min⁻¹ to achieve a normal pCO₂. Hyperventilation is harmful.

Bag-mask ventilation. BMV is effective and safe for a child requiring assisted ventilation for a short period, i.e. in the prehospital setting or in an emergency department.71,90—92 Assess the effectiveness of BMV by observing adequate chest rise, monitoring heart rate, auscultating for breath sounds and measuring peripheral oxygen saturation (SpO₂). Any healthcare provider dealing with children must be able to deliver BMV effectively.

Prolonged ventilation. If prolonged ventilation is required, the benefits of a secured airway probably outweigh the potential risks associated with tracheal intubation.

Monitoring of breathing and ventilation

End tidal CO₂. Monitoring end-tidal CO₂ with a colorimetric detector or capnometer confirms tracheal tube placement in the child weighing more than 2 kg, and may be used in pre- and in-hospital settings, as well as during any transportation of the child.93—97 A colour change or the presence of a capnographic waveform indicates that the tube is in the tracheobronchial tree, both in the presence of a perfusing rhythm and during cardiopulmonary arrest. Capnography does not rule out intubation of the right mainstem bronchus. The absence of exhaled CO₂ during cardiopulmonary arrest may not be caused by tube misplacement, since a low or absent end-tidal CO₂ may reflect low or absent pulmonary blood flow.98—101

Oesophageal detector devices. The self-inflating bulb or aspirating syringe (oesophageal detector device, ODD) may be used for the secondary confirmation of tracheal tube placement in children with a perfusing rhythm.102,103 There are no studies on the use of ODD in children who are in cardiopulmonary arrest.

Pulse oximetry. Clinical evaluation of the oxygen level is unreliable; therefore monitor the child’s peripheral oxygen saturation continuously by pulse oximetry. Pulse oximetry can be unreliable under certain conditions, e.g. if the child is in shock, in cardiopulmonary arrest or has poor peripheral perfusion. Although pulse oximetry is relatively simple, it is a poor guide to tracheal tube displacement; capnography detects tracheal tube dislodgement more rapidly than pulse oximetry.104
Vascular access

Vascular access is essential to give drugs and fluids and obtain blood samples. Venous access can be difficult to establish during resuscitation of an infant or child. Limit the maximum number of attempts to obtain IV access to three; thereafter, insert an IO needle.

Intraosseous access. IO access is a rapid, safe, and effective route to give drugs, fluids and blood products. The onset of action and time to achieve adequate plasma drug concentrations are similar to those provided by central venous access. Bone marrow samples can be used to cross-match for blood type or group, and for blood gas measurement (the values are comparable to central venous blood gases). Flush each drug with a bolus of normal saline to ensure dispersal beyond the marrow cavity and to achieve faster distribution to the central circulation. Intraosseous access can be maintained until definitive IV access has been established.

Intravenous access. Peripheral IV access provides plasma concentrations of drugs and clinical responses equivalent to central or IO access. Central lines provide more secure long-term access but offer no advantages during resuscitation, compared with IO or peripheral IV access.

Tracheal tube access

IV and IO access are better than the tracheal route for giving drugs. Lipid-soluble drugs, such as lidocaine, atropine, adrenaline and naloxone are absorbed via the lower airway. Optimal tracheal tube drug doses are unknown because of the great variability of alveolar drug absorption, but the following dosages have been recommended as guidance:
- adrenaline, 100 mcg kg\(^{-1}\)
- lidocaine, 2–3 mg kg\(^{-1}\)
- atropine, 30 mcg kg\(^{-1}\)

The optimal dose of naloxone is not known. Dilute the drug in 5 ml of normal saline and follow administration with five ventilations. Do not give non-lipid soluble medications (e.g., glucose, bicarbonate, calcium) via the tracheal tube because they will damage the airway mucosa.

Fluids and drugs

Volume expansion is indicated when a child shows signs of shock in the absence of volume overload. If systemic perfusion is inadequate, give a bolus of 20 ml kg\(^{-1}\) of an isotonic crystalloid, even if the systemic blood pressure is normal. Following every bolus, re-assess the child’s clinical state using ABC, to decide whether a further bolus or other treatment is required.

There are insufficient data to make recommendations about the use of hypertonic saline for shock associated with head injuries or hypovolaemia. There are also insufficient data to recommend delayed fluid resuscitation in the hypotensive child with blunt trauma. Avoid dextrose-containing solutions unless there is hypoglycaemia. However, hypoglycaemia must actively be sought and avoided, particularly in the small child or infant.

Adenosine

Adenosine is an endogenous nucleotide which causes a brief atrioventricular (AV) block and impairs accessory bundle re-entry at the level of the AV node. Adenosine is recommended for the treatment of supraventricular tachycardia (SVT). It is safe to use, as it has a short half-life (10 s); give it intravenously via upper limb or central veins, to minimise the time taken to reach the heart. Give adenosine rapidly, followed by a flush of 3–5 ml of normal saline.

Adrenaline (epinephrine)

Adrenaline is an endogenous catecholamine with potent alpha, beta-1 and beta-1 adrenergic actions. It is the essential medication in cardiopulmonary arrest, and is placed prominently in the treatment algorithms for non-shockable and shockable rhythms. Adrenaline induces vasoconstriction, increases diastolic pressure and thereby improves coronary artery perfusion pressure, enhances myocardial contractility, stimulates spontaneous contractions and increases the amplitude and frequency ofVF, so increasing the likelihood of successful defibrillation. The recommended IV/IO dose of adrenaline in children is 10 mcg kg\(^{-1}\). The dose of adrenaline given via the tracheal tube is ten times this (100 mcg kg\(^{-1}\)). If needed, give further doses of adrenaline every 3–5 min. The use of higher doses of adrenaline via the IV or IO route is not recommended routinely, as it does not improve survival or neurological outcome after cardiopulmonary arrest.
Once spontaneous circulation is restored, a continuous infusion of adrenaline may be required. Its haemodynamic effects are dose related; there is also considerable variability between children in response, therefore, titrate the infusion dose to the desired effect. High infusion rates may cause excessive vasoconstriction, compromising extremity, mesenteric, and renal blood flow. High-dose adrenaline may cause severe hypertension and tachyarrhythmias.\(^1\)

To avoid tissue damage it is essential to give adrenaline through a secure intravascular line (IV or IO). Adrenaline and other catecholamines are inactivated by alkaline solutions and should never be mixed with sodium bicarbonate.\(^2\)

Amiodarone

Amiodarone is a non-competitive inhibitor of adrenergic receptors; it depresses conduction in myocardial tissue and therefore slows AV conduction and prolongs the QT interval and the refractory period. Except when given for the treatment of refractory VF/pulseless VT, amiodarone must be injected slowly (over 10–20 min) with systemic blood pressure and ECG monitoring to avoid fast-infusion-related hypotension. This side effect is less common with the aqueous solution.\(^3\) Other rare but significant adverse effects are bradycardia and polymorphous VT.\(^4\)

Atropine

Atropine accelerates sinus and atrial pacemakers by blocking the parasympathetic response. It may also increase AV conduction. Small doses (<100 mcg) may cause paradoxical bradycardia.\(^5\)

Calcium

Calcium is essential for myocardial contraction\(^6\) but routine use of calcium does not improve the outcome from cardiopulmonary arrest.\(^7\)–\(^10\)

Glucose

Neonatal, child and adult data show that both hyperglycaemia and hypoglycaemia are associated with poor outcome after cardiopulmonary arrest,\(^11\)–\(^13\) but it is uncertain if this is causative or merely an association.\(^14\) Check blood or plasma glucose concentration and monitor closely in any ill or injured child, including after cardiac arrest. Do not give glucose-containing fluids during CPR unless hypoglycaemia is present. Avoid hyperglycaemia and hypoglycaemia following return of spontaneous circulation (ROSC).

Magnesium

There is no evidence for giving magnesium routinely during cardiopulmonary arrest and CPR or after ROSC is not recommended.\(^15\) After effective ventilation and chest compressions have been achieved and adrenaline given, sodium bicarbonate may be considered for the child who has had a prolonged cardiopulmonary arrest and severe metabolic acidosis. Sodium bicarbonate may also be considered in the case of haemodynamic instability and co-existing hyperkalaemia, or in the management of tricyclic overdose. Excessive quantities of sodium bicarbonate may impair tissue oxygen delivery, produce hypokalaemia, hypernatraemia and hyperosmolality and inactivate catecholamines.

Lidocaine

Lidocaine is less effective than amiodarone for defibrillation-resistant VF/VT in adults,\(^16\) and therefore is not the first-line treatment in defibrillation-resistant VF/VT in children.

Procainamide

Procainamide slows intra-atrial conduction and prolongs the QRS and QT intervals; it can be used in SVT\(^17\)–\(^19\) or VT\(^20\) resistant to other medications, in the haemodynamically stable child. However, paediatric data are sparse and procainamide should be used cautiously.\(^21\)–\(^23\) Procainamide is a potent vasodilator and can cause hypotension; infuse it slowly with careful monitoring.\(^24\)–\(^26\)

Vasopressin

Vasopressin is an endogenous hormone that acts at specific receptors, mediating systemic vasconstriction (via V1 receptor) and the reabsorption of water in the renal tubule (by the V2 receptor).\(^27\) The use of vasopressin for the treatment of cardiac arrest in adults is discussed in detail in Section 4e. There is currently insufficient evidence to support...
or refute the use of vasopressin as an alternative to, or in combination with, adrenaline in any cardiac arrest rhythm in adults. Thus, there is currently insufficient evidence to recommend the routine use of vasopressin in the child with cardiopulmonary arrest.178-180

Defibrillators

Defibrillators are either automatically (such as the AED) or manually operated, and may be capable of delivering either monophasic or biphasic shocks. Manual defibrillators capable of delivering the full energy requirements from neonates upwards must be available within hospitals and in other healthcare facilities caring for children at risk of cardiopulmonary arrest. Automated external defibrillators are preset for all variables, including the energy dose.

Pad/paddle size for defibrillation. The largest possible available paddles should be chosen to provide good contact with the chest wall. The ideal size is unknown, but there should be good separation between the pads.181,182 Recommended sizes are

- 4.5 cm diameter for infants and children weighing <10 kg
- 8–12 cm diameter for children >10 kg (older than 1 year)

To decrease skin and thoracic impedance, an electrically conducting interface is required between the skin and the paddles. Performed gel pads or self-adhesive defibrillation electrodes are effective. Do not use ultrasound gel, saline-soaked gauze, alcohol-soaked gauze/pads or ultrasound gel.

Position of the paddles. Apply the paddles firmly to the bare chest in the anterolateral position, one paddle placed below the right clavicle and the other in the left axilla (Figure 6.8). If the paddles are too large, and there is a danger of charge arcing across the paddles, one should be placed on the upper back, below the left scapula, and the other on the front, to the left of the sternum. This is known as the anteroposterior position.

Optimal paddle force. To decrease transthoracic impedance during defibrillation, apply a force of 3 kg for children weighing <10 kg, and 5 kg for larger children.183,184

Energy dose in children. The ideal energy dose for safe and effective defibrillation is unknown.

Figure 6.8 Paddle positions for defibrillation — child. © 2005 ERC.

Biphasic shocks are at least as effective and produce less post-shock myocardial dysfunction than monophasic shocks.33,34,37-40 Animal models show better results with paediatric doses of 3–4 J kg\(^{-1}\) than with lower doses,14,37 or adult doses.35 Doses larger than 4 J kg\(^{-1}\) (as much as 9 J kg\(^{-1}\)) have defibrillated children effectively with negligible side effects.27,34 When using a manual defibrillator, use 4 J kg\(^{-1}\) (biphasic or monophasic waveform) for the first and subsequent shocks.

If no manual defibrillator is available, use an AED that can recognise paediatric shockable rhythms.29,30,185 This AED should be equipped with a dose attenuator which decreases the delivered energy to a lower dose more suitable for children aged 1–8 years (50–75 J).31 If such an AED is not available, in an emergency use a standard AED and the preset adult energy levels. For children weighing more than 25 kg (above 8 years), use a standard AED with standard paddles. There is currently insufficient evidence to support a recommendation for or against the use of AEDs in children less than 1 year.

Management of cardiopulmonary arrest

A B C

Commence and continue with basic life support (Figure 6.9).

A and B

Oxygenate and ventilate with BMV.

- Provide positive pressure ventilation with a high inspired oxygen concentration.
- Give five rescue breaths followed by external chest compression and positive pressure ventila-
tion in the ratio of 15:2 (lone rescuer may use 30:2).
- Avoid rescuer fatigue by changing the rescuer performing chest compressions frequently.
- Establish cardiac monitoring.

C

Assess cardiac rhythm and signs of circulation (± check for a central pulse for no more than 10 s).

Asystole, pulseless electrical activity (PEA)—non–shockable
- Give adrenaline, 10 mcg kg\(^{-1}\) IV or IO, and repeat every 3–5 min.
- If no vascular access is available and a tracheal tube is in situ, give adrenaline, 100 mcg kg\(^{-1}\), via this route until IV/IO access is obtained.
- Identify and treat any reversible causes (4Hs & 4Ts).

VF/pulseless VT—shockable
- Attempt defibrillation immediately (4 J kg\(^{-1}\) for all shocks).
- Resume CPR as soon as possible.
- After 2 min, check the cardiac rhythm on the monitor.
- Give second shock if still in VF/pulseless VT.
Immediately resume CPR for 2 min and check monitor; if no change, give adrenaline followed immediately by a 3rd shock.

CPR for 2 min.

Give amiodarone if still in VF/pulseless VT followed immediately by a 4th shock.

If the child remains in VF/pulseless VT, continue to alternate shocks with 2 min of CPR.

If signs of life become evident, check the monitor for an organised rhythm; if this is present, check for a central pulse.

Identify and treat any reversible causes (4Hs & 4Ts).

If defibrillation was successful but VF/pulseless VT recurs, resume CPR, give amiodarone and defibrillate again at the dose that was effective previously. Start a continuous infusion of amiodarone.

Reversible causes of cardiac arrest (4 Hs and 4 Ts)

- Hypoxia
- Hypovolaemia
- Hyper/hypokalaemia
- Hypothermia
- Tension pneumothorax
- Tamponade (coronary or pulmonary)
- Toxic/therapeutic disturbances
- Thrombosis (coronary or pulmonary)

Sequence of events in cardiopulmonary arrest

- When a child becomes unresponsive, without signs of life (no breathing, cough or any detectable movement), start CPR immediately.
- Provide BMV with 100% oxygen.
- Commence monitoring. Send for a manual or automatic external defibrillator (AED) to identify and treat shockable rhythms as quickly as possible.

In the less common circumstance of a witnessed sudden collapse, early activation of emergency services and getting an AED may be more appropriate; start CPR as soon as possible. Rescuers must perform CPR with minimal interruption until attempted defibrillation.

Cardiac monitoring

Position the cardiac monitor leads or defibrillation paddles as soon as possible, to enable differentiation between a shockable and a non-shockable cardiac rhythm. Invasive monitoring of systemic blood pressure may help to improve effectiveness of chest compression, but must not delay the provision of basic or advanced resuscitation.

Shockable rhythms comprise pulseless VT and VF. These rhythms are more likely in the child who presents with sudden collapse. Non-shockable rhythms comprise PEA, bradycardia (<60 beats min⁻¹ with no signs of circulation) and asystole. PEA and bradycardia often have wide QRS complexes.

Non-shockable rhythms

Most cardiopulmonary arrests in children and adolescents are of respiratory origin. A period of immediate CPR is therefore mandatory in this age group, before searching for an AED or manual defibrillator, as their immediate availability will not improve the outcome of a respiratory arrest. Bystander CPR is associated with a better neurological outcome in adults and children. The most common ECG patterns in infants, children and adolescents with cardiopulmonary arrest are asystole and PEA. PEA is characterised by organised, wide complex electrical activity, usually at a slow rate, and absent pulses. PEA commonly follows a period of hypoxia or myocardial ischaemia, but occasionally can have a reversible cause (i.e., one of the 4 H's and 4 T's) that led to a sudden impairment of cardiac output.

Shockable rhythms

VF occurs in 3.8–19% of cardiopulmonary arrests in children; the incidence of VF/pulseless VT increases with age. The primary determinant of survival from VF/pulseless VT cardiopulmonary arrest is the time to defibrillation. Prehospital defibrillation within the first 3 min of witnessed adult VF arrest results in >50% survival. However, the success of defibrillation decreases dramatically as the time to defibrillation increases; for every minute delay in defibrillation (without any CPR), survival decreases by 7–10%. Survival after more than 12 min of VF in adult victims is <5%. Cardiopulmonary resuscitation provided before defibrillation for response intervals longer than 5 min improved outcome in some studies, but not in others.

Drugs in shockable rhythms

Adrenaline is given every 3–5 min by the IV or IO route in preference to the tracheal tube route. Amiodarone is indicated in defibrillation-resistant
VF/pulseless VT. Experimental and clinical experience with amiodarone in children is scarce; evidence from adult studies demonstrates increased survival to hospital admission, but not to hospital discharge. One paediatric case series demonstrates the effectiveness of amiodarone for life-threatening ventricular arrhythmias. Therefore, IV amiodarone has a role in the treatment of defibrillation refractory or recurrent VF/pulseless VT in children.

Arrhythmias

Unstable arrhythmias

Check the central pulse of any child with an arrhythmia; if the pulse is absent, proceed to treating the child as being in cardiopulmonary arrest. If the child has a central pulse, evaluate his haemodynamic status. Whenever the haemodynamic status is compromised, the first steps are as follows.

- Open the airway.
- Assist ventilation and give oxygen.
- Attach ECG monitor or defibrillator and assess the cardiac rhythm.
- Evaluate if the rhythm is slow or fast for the child’s age.
- Evaluate if the rhythm is regular or irregular.
- Measure QRS complex (narrow complexes, <0.08 s duration; large complexes, >0.08 s).
- The treatment options are dependent on the child’s haemodynamic stability.

Bradyarrhythmias

Bradyarrhythmia is caused commonly by hypoxia, acidosis and severe hypotension; it may progress to cardiopulmonary arrest. Give 100% oxygen, and positive pressure ventilation if required, to any child presenting with bradyarrhythmia and circulatory failure.

If a poorly perfused child has a heart rate <60 beats min⁻¹, and does not respond rapidly to ventilation with oxygen, start chest compressions and give adrenaline. If the bradyarrhythmia is caused by vagal stimulation, provide ventilation with 100% oxygen and give atropine, before giving adrenaline.

A cardiac pacemaker is useful only in cases of AV block or sinus node dysfunction unresponsive to oxygenation, ventilation, chest compressions and other medications; the pacemaker is not effective in asystole or arrhythmias caused by hypoxia or ischaemia.

Tachycardia

Narrow complex tachycardia. If supraventricular tachycardia (SVT) is the likely rhythm, vagal manoeuvres (Valsalva or diving reflex) may be used in haemodynamically stable children. The manoeuvres can be used in unstable children if they do not delay chemical or electrical cardioversion. If the child is haemodynamically unstable, omit vagal manoeuvres and attempt electrical cardioversion immediately. Adenosine is usually effective in converting SVT into sinus rhythm. Adenosine is given by rapid IV injection as closely as practical to the heart (see above), followed immediately by a bolus of normal saline.

Electrical cardioversion (synchronised with R wave) is indicated in the haemodynamically compromised child, in whom vascular access is not available, or in whom adenosine has failed to convert the rhythm. The first energy dose for electrical cardioversion of SVT is 0.5—1 J kg⁻¹ and the second dose is 2 J kg⁻¹. If unsuccessful, give amiodarone or procainamide under guidance from a paediatric cardiologist or intensivist before the third attempt. Amiodarone has been shown to be effective in the treatment of SVT in several paediatric studies. However, since most studies of the use of amiodarone in narrow-complex tachycardias have been for junctional ectopic tachycardia in postoperative children, the applicability of its use in all cases of SVT may be limited. If the child is haemodynamically stable, early consultation with an expert is recommended before giving amiodarone.

Wide complex tachycardia. In children, wide-QRS-complex tachycardia is more likely to be supraventricular than ventricular in origin. However, wide-QRS-complex tachycardia, although uncommon, must be considered to be VT in haemodynamically unstable children until proven otherwise. VT occurs most often in the child with underlying heart disease (e.g., after cardiac surgery, cardiomyopathy, myocarditis, electrolyte disorders, prolonged QT interval, central intracardiac catheter). Synchronised cardioversion is the treatment of choice for unstable VT with a pulse. Consider antiarrhythmic therapy if a second cardioversion dose is unsuccessful or if VT recurs. Amiodarone has been shown to be safe and effective in treating paediatric arrhythmias.

Stable arrhythmias

Contact an expert before initiating therapy, while maintaining the child’s ABC. Depending on the
child’s clinical history, presentation and ECG diagnosis, a child with stable, wide-QRS-complex tachycardia may be treated for SVT and be given vagal manoeuvres or adenosine. Otherwise, consider amiodarone as a treatment option; similarly, consider amiodarone if the diagnosis of VT is confirmed by ECG. Procainamide may also be considered in stable SVT refractory to vagal manoeuvres and adenosine as well as in stable VT. Do not give procainamide with amiodarone.

Post-arrest management

Myocardial dysfunction is common after cardiopulmonary resuscitation. Vasoactive drugs may improve the child’s post-arrest haemodynamic values, but the drugs must be titrated according to the clinical condition. They must be given continuously through an IV line.

Temperature control and management

Hypothermia is common in the child following cardiopulmonary resuscitation. Central hypothermia (32–34°C) may be beneficial, whereas fever may be detrimental to the injured brain of survivors. Although there are no paediatric studies, mild hypothermia has an acceptable safety profile in adults and neonates; it could increase the number of neurologically intact survivors.

A child who regains a spontaneous circulation but remains comatose after cardiopulmonary arrest may benefit from being cooled to a core temperature of 32–34°C for 12–24 h. The successfully resuscitated child with hypothermia and ROSC should not be actively rewarmed unless the core temperature is below 32°C. Following a period of mild hypothermia, rewarm the child slowly at 0.25–0.5°C·h⁻¹.

There are several methods to induce, monitor and maintain body temperature in children. External or internal cooling techniques can be used to initiate cooling. Shivering can be prevented by deep sedation and neuromuscular blockade. Complications can occur and include an increased risk of infection, cardiovascular instability, coagulopathy, hyperglycaemia and electrolyte abnormalities.

The optimum target temperature, rate of cooling, duration of hypothermia and rate of rewarming after deliberate cooling have yet to be determined; currently, no specific protocol for children can be recommended.

Fever is common following cardiopulmonary resuscitation; it is associated with a poor neurological outcome. With each degree of body temperature greater than 37°C, there are limited experimental data suggesting that the treatment of fever with antipyretics and/or physical cooling reduces neuronal damage. Antipyretics and accepted drugs to treat fever are safe; therefore, use them to treat fever aggressively.

Prognosis of cardiopulmonary arrest

There are no simple guidelines to determine when resuscitative efforts become futile. After 20 min of resuscitation, the team leader of the resuscitation team should consider whether or not to stop. The relevant considerations in the decision to continue the resuscitation include the cause of arrest, pre-existing conditions, whether the arrest was witnessed, the duration of untreated cardiopulmonary arrest (‘no flow’), the effectiveness and duration of CPR (‘low flow’), the promptness of extracorporeal life support for a reversible disease process and associated special circumstances (e.g., icy water drowning).

Parental presence

The majority of parents would like to be present during resuscitation and when any procedure is carried out on their child. Parents witnessing their child’s resuscitation can see that everything possible has been attempted. Furthermore, they may have the opportunity to say goodbye to their child; allowing parents to be at the side of their child has been shown to help them gain a realistic view of the attempted resuscitation and the child’s death. Families who were present at their child’s death showed less anxiety and depression, better adjustment and had an improved grieving process when assessed several months later. Parental presence in the resuscitation room may help healthcare providers maintain their professional behaviour while also helping them to see the child as a human being and a family member.

Family presence guidelines

A dedicated member of the resuscitation team should be present with the parents to explain the process in an empathetic manner, ensuring that
...the parents do not interfere with or distract the resuscitation. If the presence of the parents is impeding the progress of the resuscitation, they should be sensitively asked to leave. When appropriate, physical contact with the child should be allowed and, wherever possible, the parents should be allowed to be with their dying child at the final moment.256,261–264

The leader of the resuscitation team, not the parents, will decide when to stop the resuscitation; this should be expressed with sensitivity and understanding. After the event the team should be debriefed, to enable any concerns to be expressed and for the team to reflect on their clinical practice in a supportive environment.

6c Resuscitation of babies at birth

Introduction

The following guidelines for resuscitation at birth have been developed during the process that culminated in the 2005 International Consensus Conference on Emergency Cardiovascular Care (ECC) and Cardiopulmonary Resuscitation (CPR) Science with Treatment Recommendations.265 They are an extension of the guidelines already published by the ERC,2 and take into account recommendations made by other national266 and international organisations.267

The guidelines that follow do not define the only way that resuscitation at birth should be achieved; they merely represent a widely accepted view of how resuscitation at birth can be carried out both safely and effectively.

Preparation

Relatively few babies need any resuscitation at birth. Of those that do need help, the overwhelming majority will require only assisted lung aeration. A small minority may need a brief period of chest compressions in addition to lung aeration. Of 100,000 babies born in Sweden in 1 year, only 10 per 1000 (1%) babies weighing 2.5 kg or more appeared to need resuscitation at delivery.268 Of those babies receiving resuscitation, 8 per 1000 responded to mask inflation alone, whereas the remaining 10% appeared not to respond to mask inflation and therefore were intubated at birth. Resuscitation or specialist help at birth is more likely to be needed by babies with intrapartum evidence of significant fetal compromise, babies delivering before 35 weeks’ gestation, babies delivering vaginally by the breech and multiple pregnancies. Although it is often possible to predict the need for resuscitation before a baby is born, this is not always the case. Therefore, personnel trained in newborn life support should be easily available at every delivery and, should there be any need for resuscitation, the care of the baby should be their sole responsibility. One person experienced in tracheal intubation of the newborn should also be easily available for normal low-risk deliveries and, ideally, in attendance for deliveries associated with a high risk for neonatal resuscitation. Local guidelines indicating who should attend deliveries should be developed based on current practice and clinical audit.

An organised programme educating in the standards and skills required for resuscitation of the newborn is therefore essential for any institution in which deliveries occur.

Planned home deliveries

The recommendations for those who should attend a planned home delivery vary from country to country, but the decision to undergo a planned home delivery, once agreed by the medical and midwifery staff, should not compromise the standard of initial resuscitation at birth. There will inevitably be some limitations to resuscitation of a newborn baby in the home because of the distance from further assistance, and this must be made clear to the mother at the time plans for home delivery are made. Ideally, two trained professionals should be present at all home deliveries;269 one of these must be fully trained and experienced in providing mask ventilation and chest compressions in the newborn.

Equipment and environment

Resuscitation at birth is often a predictable event. It is therefore simpler to prepare the environment and the equipment before delivery of the baby than is the case in adult resuscitation. Resuscitation should ideally take place in a warm, well-lit, draught-free area with a flat resuscitation surface placed below a radiant heater and other resuscita...
tation equipment immediately available. All equip-
ment must be checked daily.

When a birth takes place in a non-designated
delivery area, the recommended minimum set
of equipment includes a device for safe, assisted lung
aeration of an appropriate size for the newborn,
warm dry towels and blankets, a clean (sterile)
instrument for cutting the umbilical cord and clean
gloves for the attendant. It may also be helpful to
have a suction device with a suitably sized suction
 catheter and a tongue depressor (or laryngoscope),
to enable the oropharynx to be examined.

Temperature control

Naked, wet, newborn babies cannot maintain their
body temperature in a room that feels comfortably
warm for adults. Compromised babies are partic-
ularly vulnerable. Exposure of the newborn to
cold stress will lower arterial oxygen tension and
increase metabolic acidosis. Prevent heat loss by

- protecting the baby from draughts
- keeping the delivery room warm
- drying the term baby immediately after delivery.
 Cover the head and body of the baby, apart from
 the face, with a warm towel to prevent further
 heat loss. Alternatively, place the baby skin to
 skin with the mother and cover both with a towel
- placing the baby on a warm surface under a pre-
 heated radiant warmer if resuscitation is needed

In very preterm babies (especially below 28
weeks’ gestation), drying and wrapping may not be
sufficiently effective. A more effective method of
keeping these babies warm is to cover the head and
body of the baby (apart from the face) with plas-
tic wrapping, without drying the baby beforehand,
and then to place the baby so covered under radiant
heat.

Initial assessment

The Apgar scoring system was not designed to iden-
tify prospectively babies needing resuscitation. Several
studies have also suggested that it is highly subjective. However, components of the
score, namely respiratory rate, heart rate and
colour, if assessed rapidly, can identify babies need-
ing resuscitation. Furthermore, repeated assess-
ment of these components can indicate whether the
baby is responding or whether further efforts are
needed.

Respiratory activity

Check whether the baby is breathing. If so, eval-
uate the rate, depth and symmetry of respiration,
together with any abnormal breathing pattern such
as gasping or grunting.

Heart rate

This is best evaluated by listening to the apex beat
with a stethoscope. Feeling the pulse in the base
of the umbilical cord is often effective but can be
misleading; cord pulsation is only reliable if found
to be more than 100 beats min⁻¹.

Colour

A healthy baby is born blue but becomes pink within
30 s of the onset of effective breathing. Observe
whether the baby is centrally pink, cyanosed or
pale. Peripheral cyanosis is common and does not,
by itself, indicate hypoxaemia.

Tone

A very floppy baby is likely to be unconscious and is
likely to need respiratory support.

Tactile stimulation

Drying the baby usually produces enough stimula-
tion to induce effective respiration. Avoid more
vigorous methods of stimulation. If the baby fails
to establish spontaneous and effective respirations
following a brief period of stimulation, further sup-
port will be required.

Classification according to initial assessment

On the basis of the initial assessment, the babies
can usually be divided into four groups.

Group 1: vigorous breathing or crying
good tone
rapidly becoming pink
heart rate higher than 100 beats min⁻¹

This baby requires no intervention other than
drying, wrapping in a warm towel and, where
appropriate, handing to the mother. The baby will
remain warm through skin-to-skin contact with
mother under a cover, and may be put to the breast
at this stage.
European Resuscitation Council Guidelines for Resuscitation 2005

Group 2: breathing inadequately or apnoeic remaining centrally blue normal or reduced tone heart rate less than 100 beats min$^{-1}$

This baby may respond to tactile stimulation and/or facial oxygen, but may need mask inflation.

Group 3: breathing inadequately or apnoeic blue or pale floppy heart rate less than 100 beats min$^{-1}$

This baby may improve with mask inflation but may also require chest compressions.

Group 4: breathing inadequately or apnoeic pale floppy no detectable heart rate

This baby will require immediate airway control, lung inflation and ventilation. Once this has been successfully accomplished, the baby may also need chest compressions and perhaps drugs.

There remains a very rare group of babies who, though breathing adequately and with a good heart rate, remain blue. This group includes a range of possible diagnoses such as diaphragmatic hernia, surfactant deficiency, congenital pneumonia, pneumothorax or cyanotic congenital heart disease.

Newborn life support

Commence newborn life support (Figure 6.10) if assessment demonstrates that the baby has failed to establish adequate regular normal breathing, or has a heart rate of less than 100 beats min$^{-1}$. Opening the airway and aerating the lungs is usually all that is necessary. Furthermore, more complex interventions will be futile unless these two first steps have been successfully completed.

Airway

The baby should be on his or her back with the head in a neutral position (Figure 6.11). A 2-cm thickness of the blanket or towel placed under the baby’s shoulder may be helpful in maintaining proper head position. In floppy babies, application of jaw thrust or the use of an appropriately sized oropharyngeal airway may be helpful in opening the airway.

Suction is needed only if there is particulate matter or blood obstructing the airway. Aggressive pharyngeal suction can delay the onset of spontaneous breathing and cause laryngeal spasm and vagal bradycardia. The presence of thick meconium in a non-vigorous baby is the only indication for considering immediate suction. If suction is required, it is best done under direct vision. Connect a 12–14 FG suction catheter, or a Yankauer sucker, to a suction source not exceeding –100 mmHg.

Breathing

There is currently insufficient evidence to specify the concentration of oxygen to be used when starting resuscitation. After initial steps at birth, if respiratory efforts are absent or inadequate, lung aeration is the priority (Figure 6.12). The primary measure of adequate initial lung inflation is a prompt improvement in heart rate; assess chest wall movement if the heart rate does not improve.

For the first few breaths maintain the initial inflation pressure for 2–3 s. This will help lung expansion. Most babies needing resuscitation at birth will respond with a rapid increase in heart rate within 30 s of lung inflation. If the heart rate increases but the baby is not breathing adequately, continue ventilation at a rate of about 30 breaths min$^{-1}$, allowing approximately 1 s for each inflation, until there is adequate spontaneous breathing.

Adequate passive ventilation is usually indicated by either a rapidly increasing heart rate or a heart rate that is maintained faster than 100 beats min$^{-1}$. If the baby does not respond in this way, the most likely reason is inadequate airway control or ventilation. Look for passive chest movement in time with inflation efforts; if these are present, then lung aeration has been achieved. If these are absent, then airway control and lung aeration have not been confirmed. Without adequate lung aeration chest compressions will be ineffective; therefore, confirm lung aeration before progressing to circulatory support. Some practitioners will ensure lung aeration by tracheal intubation, but this requires training and experience to be achieved effectively. If this skill is not available and the heart rate is decreasing, re-evaluate airway position and deliver aeration breaths while summoning a colleague with intubation skills.

Continue ventilatory support until the baby has established normal regular breathing.

Circulatory support

Circulatory support with chest compressions is effective only if the lungs have first been successfully inflated. Give chest compressions if the heart rate is less than 60 beats min$^{-1}$ despite adequate ventilation. The optimal technique is to place the
two thumbs side by side over the lower third of the sternum, with the fingers encircling the torso and supporting the back (Figure 6.13).21,22,25,278,279 The lower third of the sternum is compressed to a depth of approximately one third of the anterior-posterior diameter of the chest. A compression to relaxation ratio with a slightly shorter compression than relaxation phase offers theoretical advantages for blood flow in the very young infant.280 Do not lift the thumbs off the sternum during the relaxation phase, but allow the chest wall to return to its relaxed position between compressions. Use a 3:1 ratio of compressions to ventilations, aiming to achieve approximately 120 events min$^{-1}$, i.e. approximately 90 compressions and 30 breaths. However, the quality of the compressions and breaths are more important than the rate.281 Check the heart rate after about 30 s and periodically thereafter. Discontinue chest compressions when the spontaneous heart rate is faster than 60 beats min$^{-1}$.

Figure 6.10 Newborn life support algorithm.

Figure 6.11 Newborn head in neutral position. © 2005 Resuscitation Council (UK).
Drugs

Drugs are rarely indicated in resuscitation of the newborn infant. Bradycardia in the newborn infant is usually caused by inadequate lung inflation or profound hypoxia, and establishing adequate ventilation is the most important step to correct it. However, if the heart rate remains less than 60 beats min\(^{-1}\) despite adequate ventilation and chest compressions, drugs may be needed. These drugs are presumed to exert their effect by their action on the heart and are being given because cardiac function is inadequate. It is therefore necessary to give them as close to the heart as possible, ideally via a rapidly inserted umbilical venous catheter (Figure 6.14).

Adrenaline

Despite the lack of human data, it is reasonable to continue to use adrenaline when adequate ventilation and chest compressions have failed to increase the heart rate above 60 beats min\(^{-1}\). Use the IV route as soon as venous access is established. The recommended IV dose is 10–30 mcg kg\(^{-1}\). The tracheal route is not recommended (see below) but, if it is used, it is highly likely that doses of 30 mcg kg\(^{-1}\) or less are ineffective. Try a higher dose (up to 100 mcg kg\(^{-1}\)). The safety of these higher tracheal doses has not been studied. Do not give high IV doses.

Bicarbonate

If effective spontaneous cardiac output is not restored despite adequate ventilation and adequate chest compressions, reversing intracardiac acidosis may improve myocardial function and achieve a spontaneous circulation. Give 1–2 mmol kg\(^{-1}\) IV.

Fluids

Consider volume expansion when there has been suspected blood loss or the infant appears to be in shock (pale, poor perfusion, weak pulse) and has not responded adequately to other resuscitative measures. In the absence of suitable blood (i.e., irradiated and leucocyte-depleted group O Rh-negative blood) isotonic crystalloid rather than albumin is the solution of choice for restoring intravascular volume in the delivery room. Give a bolus of 10–20 ml kg\(^{-1}\).

Stopping resuscitation

Local and national committees will determine the indications for stopping resuscitation. However, data from infants without signs of life from birth lasting at least 10 min or longer show either high mortality or severe neurodevelopmental disability. After 10 min of continuous and adequate resuscitation efforts, discontinuation of resuscitation may be justified if there are no signs of life.
Communication with the parents

It is vitally important that the team caring for the newborn baby informs the parents of the baby’s progress. At delivery adhere to the routine local plan and, if possible, hand the baby to the mother at the earliest opportunity. If resuscitation is required, inform the parents of the procedures being undertaken and why they are required.

Decisions to discontinue resuscitation ideally should involve senior paediatric staff. Whenever possible, the decision to attempt resuscitation of an extremely preterm baby should be taken in close consultation with the parents and senior paediatric and obstetric staff. Where a difficulty has been foreseen, for example in the case of severe congenital malformation, the options and prognosis should be discussed with the parents, midwives, obstetricians and birth attendants before delivery.

All discussions and decisions should be carefully recorded in the mother’s notes before delivery and also in the baby’s records after birth.

Specific questions addressed at the 2005 Consensus Conference

Maintaining normal temperature in preterm infants

Significantly, preterm babies are likely to become hypothermic despite careful application of the traditional techniques for keeping them warm (drying, wrapping and placing under radiant heat). Several randomised controlled trials and observational studies have shown that placing preterm babies under radiant heat and then covering the babies with food-grade plastic wrapping, without drying them, significantly improves temperature on admission to intensive care compared with traditional techniques. The baby’s temperature must be monitored closely because of the small but described risk of hyperthermia with this technique. All resuscitation procedures, including intubation, chest compression and insertion of lines, can be achieved with the plastic cover in place.

Infants born to febrile mothers have been reported to have a higher incidence of perinatal respiratory depression, neonatal seizures, early mortality and cerebral palsy. Animal studies indicate that hyperthermia during or following ischaemia is associated with a progression of cerebral injury. Hyperthermia should be avoided.

Meconium

Five years ago, a large randomised controlled study showed that attempting to intubate and aspirate inhaled meconium from the tracheas of vigorous infants at birth was not beneficial. A more recent large multicentre randomised controlled study has now shown that suctioning meconium from the baby’s nose and mouth before delivery of the baby’s chest (intrapartum suctioning) does not reduce the incidence or severity of meconium aspiration syndrome. Intrapartum suctioning is therefore no longer recommended. Intubation and suction of meconium from the trachea of non-vigorous infants born through meconium-stained liquor is still recommended.

Air or 100% oxygen

Several studies in recent years have raised concerns about the potential adverse effects of 100% oxygen on respiratory physiology and cerebral circulation, and the potential tissue damage from oxygen free radicals. There are also concerns about tissue damage from oxygen deprivation during and following asphyxia. Studies examining blood pressure, cerebral perfusion, and various biochemical measures of cell damage in asphyxiated animals resuscitated with 100% versus 21% oxygen, have shown conflicting results. One study of preterm infants (below 33 weeks’ gestation) exposed to 80% oxygen found lower cerebral blood flow when compared with those stabilised with 21% oxygen. Some animal data indicate the opposite effect, i.e. reduced blood pressure and cerebral perfusion with air versus 100% oxygen. Meta-analysis of four human studies demonstrated a reduction in mortality and no evidence of harm in infants resuscitated with air versus those resuscitated with 100% oxygen. However, there are several significant concerns about the methodology of these studies, and these results should be interpreted with caution.

At present, the standard approach to resuscitation is to use 100% oxygen. Some clinicians may elect to start resuscitation with an oxygen concentration less than 100%, including some who may start with air. Evidence suggests that this approach may be reasonable. However, where possible, ensure supplemental oxygen is available for use if there is no rapid improvement following successful lung aeration. If supplemental oxygen is not readily available, ventilate the lungs with air. Supplemental oxygen is recommended for babies who are breathing but have central cyanosis.
Monitoring the oxygen saturation of babies undergoing resuscitation may be useful, but studies have shown that term healthy newborns may take more than 10 min to achieve a predactyl oxygen saturation above 95% and nearly an hour to achieve this post-ductally.309,310 Giving a variable concentration of oxygen guided by pulse oximetry may improve the ability to achieve ‘normal’ oxygen saturation values while more quickly avoiding ‘hyperoxia’, but the definition of these two terms in the baby at birth are undetermined. Oxygen is a drug, and oxidant injury is theoretically more likely in preterm infants.

Initial breaths and assisted ventilation

In term infants, spontaneous or assisted initial inflations create a functional residual capacity (FRC),302–309 The optimum pressure, inflation time and flow required to establish an effective FRC have not been determined. Average initial peak inflating pressures of 30–40 cmH\textsubscript{2}O (inflation time undefined) usually ventilate unresponsive term infants successfully.315–317 Assisted ventilation rates of 30–60 breaths min−1 are used commonly, but the relative efficacy of various rates has not been investigated.

The primary measure of adequate initial ventilation is prompt increase in heart rate; assess passive chest wall movement if the heart rate does not increase. The initial peak inflating pressures needed are variable and unpredictable, and should be individualised to achieve an increase in heart rate or movement of the chest with each breath. Where pressure is being monitored, an initial inflation pressure of 20 cmH\textsubscript{2}O may be effective, but 30–40 cmH\textsubscript{2}O or higher may be required in some term babies. If pressure is not being monitored but merely limited by a non-adjustable ‘blow-off’ valve, use the minimum inflation required to achieve an increase in heart rate. There is insufficient evidence to recommend an optimum inflation time. In summary, provide artificial ventilation at 30–60 breaths min−1 to achieve or maintain a heart rate higher than 100 beats min−1 promptly.

Assisted ventilation of preterm infants

Animal studies show that preterm lungs are easily damaged by large volume inflations immediately after birth,310 and that maintaining a positive end-expiratory pressure (PEEP) immediately after birth protects against lung damage. PEEP also improves lung compliance and gas exchange.311,312 Human case series show that most apnoeic preterm infants can be ventilated with an initial inflation pressure of 20–25 cmH\textsubscript{2}O, though some infants appear to require a higher pressure.313,314

When ventilating preterm infants, very obvious passive chest wall movement may indicate excessive tidal volumes and should be avoided. Monitoring of pressure may help to provide consistent inflations and avoid high pressures. If positive-pressure ventilation is required, an initial inflation pressure of 20–25 cmH\textsubscript{2}O is adequate for most preterm infants. If a prompt increase in heart rate or chest movement is not obtained, higher pressures may be needed. If continued positive-pressure ventilation is required, PEEP may be beneficial. Continuous positive airway pressure (CPAP) in spontaneously breathing preterm infants following resuscitation may also be beneficial.314

Devices

Effective ventilation can be achieved with either a flow-inflating or self-inflating bag or with a T-piece mechanical device designed to regulate pressure.315–317 The blow-off valves of self-inflating bags are flow dependent, and pressures generated may exceed the value specified by the manufacturer.318 Target inflation pressures and long inspiratory times are achieved more consistently in mechanical models when using T-piece devices than when using bags,319 although the clinical implications are not clear. More training is required to provide an appropriate pressure using flow-inflating bags compared with self-inflating bags.320 A self-inflating bag, a flow-inflating bag or a T-piece mechanical device, all designed to regulate pressure or limit pressure applied to the airway, can be used to ventilate a newborn.

Laryngeal mask airways (LMAs) are effective for ventilating newborn near-term and full-term infants.313,321 There are few data on the use of these devices in small preterm infants.321,322 Three case series show that the LMA can provide effective ventilation in a time frame consistent with current resuscitation guidelines, although the babies being studied were not being resuscitated.322,325,326 A randomised controlled trial found no clinically significant difference between the LMA and tracheal intubation when bag-mask ventilation was unsuccessful.321 It is unclear whether the conclusions of this study can be generalized, since the LMA was inserted by experienced providers. Case reports suggest that when bag-mask ventilation has been unsuccessful and tracheal intubation is unfeasible or unsuccessful, the LMA may provide effective ventilation.327–329 There is insufficient evidence to support the routine use of the LMA as the primary airway device for resuscitation at birth.
Table 6.1 Calculation of tracheal tube size and depth of insertion

<table>
<thead>
<tr>
<th>Child’s weight (kg)</th>
<th>Gestation (weeks)</th>
<th>Tube size (mm ID)</th>
<th>Depth of insertion (cm)a</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td><28</td>
<td>2.5</td>
<td>6.5—7</td>
</tr>
<tr>
<td>1—2</td>
<td>28—34</td>
<td>3.0</td>
<td>7—8</td>
</tr>
<tr>
<td>2—3</td>
<td>34—38</td>
<td>3.0/3.5</td>
<td>8—9</td>
</tr>
<tr>
<td>>3</td>
<td>>38</td>
<td>3.5/4.0</td>
<td>>9</td>
</tr>
</tbody>
</table>

a Depth of insertion from the upper lip can be estimated as insertion depth at lip (cm) = weight in kg + 6 cm.

There are also reservations concerning its effectiveness in the following situations:

- when chest compressions are required
- for very low birth weight (VLBW) babies
- when the amniotic fluid is meconium stained

Confirming tracheal tube placement

Tracheal intubation may be considered at several points during neonatal resuscitation:

- when suctioning to remove meconium or other tracheal blockage is required
- if bag-mask ventilation is ineffective or prolonged
- when chest compressions are performed
- in special circumstances (e.g., congenital diaphragmatic hernia or birth weight below 1000 g)

The use and timing of tracheal intubation will depend on the skill and experience of the available resuscitators. Following tracheal intubation and intermittent positive pressure, a prompt increase in heart rate is the best indicator that the tube is in the tracheobronchial tree. Exhaled CO₂ detection is effective for confirmation of tracheal tube placement in infants, including VLBW infants. Detection of exhaled CO₂ in patients with adequate cardiac output confirms placement of the tube within the trachea, whereas failure to detect exhaled CO₂ strongly suggests oesophageal intubation. Poor or absent pulmonary blood flow or tracheal obstruction may prevent detection of exhaled CO₂ despite correct tracheal tube placement. Tracheal tube placement is identified correctly in nearly all patients who are not in cardiac arrest; however, in critically ill infants with poor cardiac output, inability to detect exhaled CO₂ despite correct placement may lead to unnecessary extubation. Other clinical indicators of correct tracheal tube placement include evaluation of condensed humidified gas during exhalation and presence or absence of chest movement, but these have not been evaluated systematically in newborn babies.

Tracheal tube placement (Table 6.1) must be assessed visually during intubation and, in most cases, will be confirmed by a rapid increase in heart rate on ventilating via the tracheal tube. If the heart rate remains slow, incorrect tube placement is the most likely cause. Check tube placement either visually or by detection of exhaled CO₂.

Route and dose of adrenaline

There are no placebo-controlled studies that have evaluated the use of adrenaline at any stage in human neonatal resuscitation. A paediatric study and newborn animal studies showed no benefit and a trend toward reduced survival and worse neurological status after high-dose IV adrenaline (100 mcg kg⁻¹) during resuscitation. Animal and adult human studies demonstrate that, when given via the trachea, considerably higher doses of adrenaline than currently recommended are required to achieve adequate plasma concentrations. One neonatal animal study using the currently recommended dose of tracheal adrenaline (10 mcg kg⁻¹) showed no benefit. One neonatal cohort study of nine preterm babies requiring resuscitation showed that tracheal adrenaline was absorbed, but these workers used 7–25 times the dose recommended currently.

Post-resuscitation care

Babies who have required resuscitation may deteriorate. Once adequate ventilation and circulation are established, the infant should be maintained in or transferred to an environment in which close monitoring and anticipatory care can be provided.

Glucose

Hypoglycaemia was associated with adverse neurological outcome in a neonatal animal model of asphyxia and resuscitation. Newborn animals which were hypoglycaemic at the time of
an anoxic or hypoxic-ischaemic insult had larger areas of cerebral infarction and/or decreased survival compared with controls. One clinical study demonstrated an association between hypoglycaemia and poor neurological outcome following perinatal asphyxia. No clinical neonatal studies have investigated the relationship between hypoglycaemia and neurological outcome, although in adults hyperglycaemia is associated with a worse outcome. The range of blood glucose concentration that is associated with the least brain injury following asphyxia and resuscitation cannot be defined on available evidence. Infants who require significant resuscitation should be monitored and treated to maintain blood glucose within the normal range.

Induced hypothermia

In a multicentre trial involving newborns with suspected asphyxia (indicated by need for resuscitation at birth, metabolic acidosis and early encephalopathy), selective head cooling (34.5 °C) was associated with a non-significant reduction in the number of survivors with severe disability at 18 months, but a significant benefit in the subgroup with moderate encephalopathy as judged by amplitude-integrated electroencephalogram. Infants with severe electroencephalographic suppression and seizures did not benefit from treatment. A second, small, controlled pilot study in asphyxiated infants with early induced systemic hypothermia resulted in fewer deaths and disabilities at 12 months. Modest hypothermia is associated with bradycardia and elevated blood pressure that do not usually require treatment, but a rapid increase in body temperature may cause hypothermia. Profound hypothermia (core temperature below 33 °C) may cause arrhythmia, bleeding, thrombosis and sepsis, but studies so far have not reported these complications in infants treated with modest hypothermia.

There are insufficient data to recommend routine use of modest systemic or selective cerebral hypothermia following resuscitation of infants with suspected asphyxia. Further clinical trials are needed to determine which infants benefit most and which method of cooling is most effective.

Withholding or discontinuing resuscitation

Mortality and morbidity for newborns varies according to region and to availability of resources. Social science studies indicate that parents desire a larger role in decisions to resuscitate and to continue life support in severely compromised babies. There is considerable variability among providers about the benefits and disadvantages of aggressive therapies in such babies.

Withholding resuscitation

It is possible to identify conditions associated with high mortality and poor outcome, where withholding resuscitation may be considered reasonable, particularly when there has been the opportunity for discussion with parents. A consistent and coordinated approach to individual cases by the obstetric and neonatal teams and the parents is an important goal. Withholding resuscitation and discontinuation of life-sustaining treatment during or following resuscitation are considered by many to be ethically equivalent, and clinicians should not be hesitant to withdraw support when the possibility of functional survival is highly unlikely. The following guidelines must be interpreted according to current regional outcomes.

- Where gestation, birth weight and/or congenital anomalies are associated with almost certain early death, and unacceptably high morbidity is likely among the rare survivors, resuscitation is not indicated. Examples from the published literature include extreme prematurity (gestational age <23 weeks and/or birthweight <400 g), and anomalies such as anencephaly and confirmed trisomy 13 or 18.
- Resuscitation is nearly always indicated in conditions associated with a high survival rate and acceptable morbidity. This will generally include babies with gestational age of 25 weeks or above (unless there is evidence of fetal compromise such as intrauterine infection or hypoxia-ischaemia) and those with most congenital malformations.
- In conditions associated with uncertain prognosis, where there is borderline survival and a relatively high rate of morbidity, and where the anticipated burden to the child is high, parental desires regarding resuscitation should be supported.

Withdrawing resuscitation efforts

Data from infants without signs of life from birth, lasting at least 10 min or longer, show either high mortality or severe neurodevelopmental disability. After 10 min of uninterrupted and adequate resuscitation efforts, discontinuation of resuscitation may be justified if there are no signs of life.
References

112. Abe KK, Blum GT, Yamamoto LG. Intravenous is faster and easier than umbilical venous catheterization in new-
European Resuscitation Council Guidelines for Resuscitation 2005

S127

305. Hull D. Lung expansion and ventilation during resuscitation of

306. Upton CJ, Milner AD. Endotracheal resuscitation of neonates using a

307. Vyas H, Milner AD, Hopkins IE, Boon AW. Physiologic responses to
prolonged and slow-rise inflation in the resus-
citation of the asphyxiated newborn infant. J Pediatr

308. Vyas H, Field D, Milner AD, Hopkins IE. Determinants of the
first inspiratory volume and functional residual capacity at

309. Boon AW, Milner AD, Hopkins IE. Lung expansion, tidal
exchange, and formation of the functional residual capac-
ity during resuscitation of asphyxiated neonates. J Pediatr

protection by prophylactic surfactant against the adverse
effects of large lung inflations at birth in immature lambs.

lesions induced in the premature rabbit neonate by short
periods of artificial ventilation. Acta Pathol Microbiol Scand

312. Pribnow ME, Hooper SB, Dargaville PA, et al. Positive
end expiratory pressure during resuscitation of prema-
ture lambs rapidly improves blood gases without adversely
204.

313. Hird WF, Greenough A, Gameu HR. Inflating pressures for
effective resuscitation of preterm infants. Early Hum Dev
1991;26:77—72.

314. Lindner W, Vixport S, Hummer H, Pehlandt P. Deliv-
ery room management of extremely low birth weight
infants: spontaneous breathing or intubation? Pediatrics

315. Allwood AC, Madar RJ, Baumer JH, Readdy L, Wright D.
A blinded trial of high-dose epinephrine versus standard-dose
epinephrine in a swine model of pediatric asphyxial cardiac

316. Burchfield DJ, Preziosi MP, Lucas VW, Fan J. Effects of
graded doses of epinephrine during asphyxia-induced brady-

318. Cole AF, Robin SH, Hew EM, Pynn S. An improved ventila-
tor system for delivery room management of the newborn.
Anesthesiology 1979;51:356—

319. Hoskyns EW, Milner AD, Hopkins IE. A simple method of face

ventilation of newborn infants a simple question of finger-

321. Finer NN, Rich W, Craft A, Henderson C. Comparison of
methods of bag and mask ventilation delivered for neonatal resusci-

322. Kanter RK. Evaluation of mask-bag ventilation in resuscita-

323. Esmail N, Saleh M, et al. Laryngeal mask airway ver-
sus endotracheal intubation for Apgar score improve-
ment in neonatal resuscitation. Egypt J Anesthesiol

324. Gandini D, Bronchome JR. Neonatal resuscitation with
the laryngeal mask airway in normal and low birth weight
infants. Anesth Analg 1999;89:442—

325. Paterson SJ, Byrne PJ, Moleys HG, Seal RF, Flucanue BT.
Neonatal resuscitation using the laryngeal mask airway.
Anesthesiology 1995;82:1248—53.

326. Treviranus D, Ferrarese P, Zanardo Y, Chiantelli L. Laryn-
gal mask airway in neonatal resuscitation: a survey of
current practice and perceived role by anaesthesiologists

327. Hansen TG, Joensn H, Henneberg SW, Hole P. Laryn-
gal mask airway guided tracheal intubation in a neonate
with the Pierre Robin syndrome. Acta Anaesthesiol Scand

328. Oses H, Pohlete M, Aenio F. Laryngeal mask for diffi-
401.

329. Stocks RM, Eggerman R, Thompson JW, Peery M. Airway
management of the severely retrognathic child: use of the

330. Palme-Klander C, Tunell R, Chiweli Y. Pulmonary gas
exchange immediately after birth in spontaneously breath-

331. Aziz HF, Martin JB, Houre JJ. The pediatric disposable end-
tidal carbon dioxide detector role in endotracheal intuba-

332. Bherade MS, LaCovey D. A note of caution about the continu-
ous use of colorimetric end-tidal CO2 detectors in children.

333. Repetto JE, Donohue P-CJ, Baker SF, Kelly L, Nogee LM.
Use of capnography in the delivery room for assessment of

334. Roberts WA, Maniscalco WM, Cohen AR, Litman RS,
Chibber A. The use of capnography for recognition of esophageal intubation in the neonatal intensive care unit.

epinephrine in a swine model of pediatric asphyxial cardiac

336. Ralston SH, Tucker WA, Showen L, Carter A, Babbs CF.
Endotracheal versus Intravenous epinephrine during prolonged cardiopulmonary resuscita-
tion: improved regional blood flow and resuscitation in

337. Raiston SH, Tucker WA, Showen L, Carter A, Babbs CF.
Endotracheal versus Intravenous epinephrine during elec-
tromechanical dissociation with CPR in dogs. Ann Emerg

338. Redding JS, Aunson J, Pearson JW. Effective routes of
drug administration during cardiac arrest. Anesth Analg

339. Schwab KO, von Stockhausen HB. Plasma catecholamines
after endotracheal administration of adrenaline during postnatal resuscitation. Arch Dis Child Fetal Neonatal Ed

man RJ. Poor outcome after hypoxia-ischemia in newborns
is associated with physiological abnormalities during early
recovery. Possible relevance to secondary brain injury after

341. Venucci RC, Venucci SJ. Cerebral carbohydrate metabolism
during hypoglycemia and anoxia in newborn rats.

342. Vager JY, Hettich DF, Towfigh J, Vanucci RC. Effect of insulin-induced and fasting hypoglycemia on peri-

D. Biarent et al.